Spezielle Statistik und Versuchswesen
- Fakult?t
Fakult?t Agrarwissenschaften und Landschaftsarchitektur (AuL)
- Version
Version 1 vom 20.11.2023.
- Modulkennung
44B0390
- Niveaustufe
Bachelor
- Unterrichtssprache
Deutsch
- ECTS-Leistungspunkte und Benotung
5.0
- H?ufigkeit des Angebots des Moduls
nur Wintersemester
- Dauer des Moduls
1 Semester
- Kurzbeschreibung
Mit dem Fortschreiten der Digitalisierung k?nnen in den Pflanzenwissenschaften und der Landwirtschaft komplexere Experimente durchgeführt werden. Die Digitalisierung erlaubt die automatisierte Erfassung und Speicherung gro?er Datenmengen, die über entsprechende statistische Algorithmen aggregiert und ausgewertet werden müssen. Diese Daten k?nnen zur Steuerung der Produktion oder zur Erkennung von unerwünschten Ereignissen genutzt werden. Dadurch kann eine bessere Qualit?tssicherung und Entwicklung gew?hrleistet werden. In dem Modul “Spezielle Statistik und Versuchswesen” lernen Studierende die fortgeschrittenen Algorithmen für das sp?tere wissenschaftliche und angewandte Arbeiten mit gro?en Datenmengen. Das Modul vermittelt die dafür notwendigen statistischen und algorithmischen praktischen Kenntnisse. Verschiedene statistische Verfahren werden vorgestellt und die statistischen Ma?zahlen für die Modellselektion eingeübt. Im Weiteren werden maschinelle Lernverfahren pr?sentiert und auf Fallbeispiele angewendet. Der Fokus des Moduls liegt auf der praktischen Anwendung und Diskussion der Ergebnisse der statistischen Modellierungen. Die vorhandenen Programmierkenntnisse in R werden weiter vertieft und automatisierte Berichtserstellung mit Quarto und RMarkdown eingeübt. Das Arbeiten mit gro?en Datenmengen wird so für die Studierenden umsetzbar und erfahrbar gemacht. Das Modul “Spezielle Statistik und Versuchswesen” bef?higt Studierende in dem Bereich der Bio Data Science in verschiedenen Anwendungsfeldern praktisch t?tig zu sein.
- Lehr-Lerninhalte
Statistischer Anteil
- Einführung in die g?ngigen multiplen linearen Regressionen und deren Verteilungsfamilien beinhaltend die Gaussian, Poisson, Multinominal/Ordinal und Binomial.
- Grundlagen der statistischen Ma?zahlen der Modellgüte einer multiplen linearen Regression sowie deren Effektsch?tzer.
- Grundlagen der Variablenselektion und Imputation von fehlenden Werten sowie Ausrei?erdetektion.
- Einführung in die linearen gemischten Modelle und die Berücksichtigung von Messwiederholungen.
- Einführung in die nicht lineare Regression.
- Vertiefte Auseinandersetzung mit multiplen Gruppenvergleichen und deren M?glichkeiten der Visualisierung von Gruppenunterschieden.
- Einführung in die ?quivalenz oder Nichtunterlegenheit in der praktischen Anwendung.
- Einführung in die klassischen experimentellen Designs in den Agrarwissenschaften.
- Grundlagen des maschinellen Lernens und der Klassifikation von Ereignissen sowie Ma?zahlen der Bewertung eines maschinellen Lernalgorithmus.
- Anwendung der grundlegenden maschinellen Lernverfahren wie k-NN, Random Forest, Support Vector Machine und Neuronale Netze.
Informatorischer Anteil
- Durchführung aller theoretisch erarbeiteten Inhalte in R.
- Interpretation und Bewertung von statistischen Modellierungen in R.
- Fortgeschrittene Programmierung in R unter der Verwendung von regul?ren Ausdrücken.
- Automatisierte Erstellung von Berichten in Rmarkdown sowie in R Quatro.
- Einführung in die Erstellung von interaktiven R Shiny Apps.
- Gesamtarbeitsaufwand
Der Arbeitsaufwand für das Modul umfasst insgesamt 150 Stunden (siehe auch "ECTS-Leistungspunkte und Benotung").
- Lehr- und Lernformen
Dozentengebundenes Lernen Std. Workload Lehrtyp Mediale Umsetzung Konkretisierung 40 Vorlesung Pr?senz oder Online - 20 ?bung Pr?senz oder Online - Dozentenungebundenes Lernen Std. Workload Lehrtyp Mediale Umsetzung Konkretisierung 35 Veranstaltungsvor- und -nachbereitung - 20 Literaturstudium - 20 Sonstiges - 15 Prüfungsvorbereitung -
- Benotete Prüfungsleistung
- Hausarbeit oder
- Klausur oder
- Referat (mit schriftlicher Ausarbeitung)
- Bemerkung zur Prüfungsart
Jeder Studierende erh?lt einen eigenen, zuf?llig erstellten Datensatz. Dieser Datensatz muss von dem Studierenden in einer Fallstudie ausgewertet und in einer Kurzpr?sentation dargestellt werden.
Standardprüfungsart ist die Klausur (im Falle der Abweichung wird die genannte alternative Prüfungsart von der*dem Prüfenden ausgew?hlt und bei Veranstaltungsbeginn bekannt gegeben).
- Prüfungsdauer und Prüfungsumfang
Klausur, 2-stündig
- Empfohlene Vorkenntnisse
Für dieses Modul werden vertiefte Kenntnisse der deskriptiven Statistik sowie Grundkenntnisse der Statistik vorausgesetzt, wie sie in den Modulen "Mathematik und Statistik (44B0266)" und "Angewandte Statistik und Versuchswesen (44B0400)" vermittelt werden.
Studierenden, die ihre Kenntnisse und Fertigkeiten vor Beginn des Moduls auffrischen m?chten, wird folgende Grundlagenliteratur mit dem "Skript Bio Data Science" unter jkruppa.github.io empfohlen.
In dem Modul wird mit der Software R gearbeitet. Um sich im Vorfeld mit den Basisfunktionen vertraut zu machen, eignen sich beispielsweise die folgenden Video-Tutorials unter www.youtube.com/c/JochenKruppa.
- Wissensverbreiterung
Statistischer Anteil
- Die Studierenden kennen die g?ngigen experimentellen Designs in den Agrarwissenschaften.
- Die Studierenden kennen die entsprechenden Repr?sentationen der experimentellen Designs als Datensatz.
- Die Studierenden k?nnen die g?ngigen statistischen Modellierungen benennen und unterscheiden.
- Die Studierenden sind in der Lage zwischen einem kausalen und einem pr?diktiven Modell zu unterscheiden.
Informatorischer Anteil
- Die Studierenden kennen die g?ngigen Funktionen für die Datenaufbereitung in R.
- Die Studierenden sind in der Lage aus englischsprachigen Tutorien die statistische Analyseschritte für die eigenen Daten zu transferieren.
- Wissensvertiefung
Statistischer Anteil
- Die Studierenden sind in der Lage anhand einer wissenschaftlichen Fragestellung eine statistische Auswertung zu gliedern und zu planen.
- Die Studierenden k?nnen wissenschaftliche Ver?ffentlichungen lesen und in den statistischen Kontext richtig einordnen.
- Die Studierenden k?nnen eine multiple lineare Regression oder einen maschinellen Lernalgorithmus entsprechend des Endpunktes modellieren und interpretieren.
- Die Studierenden k?nnen einen multiplen Gruppenvergleich für verschiedene Endpunkte rechnen und die p-Werte entsprechend adjustieren.
- Die Studierenden k?nnen verschiedene technische Messparameter miteinander vergleichen und eine Aussage über die Nichtunterlegenheit treffen.
Informatorischer Anteil
- Die Studierenden k?nnen mit regul?ren Ausdrücken Datens?tze bearbeiten.
- Die Studierenden sind in der Lage durch eine eine parallele Programmierung eine serielle Programmierungen zu optimieren.
- Die Studierenden sind in der Lage einen automatisierten Bericht in Rmarkdown oder R Quarto zu erstellen
- Wissensverst?ndnis
Statistischer Anteil
- Die Studierenden sind die der Lage eine wissenschaftliche Fragestellung mit einem experimentellen Design und einer statistischen Modellierung zu verbinden.
- Die Studierenden k?nnen eine statistische Modellierung in einer Pr?sentation darstellen und vorstellen.
- Die Studierenden k?nnen eine wissenschaftliche Ver?ffentlichung anhand der verwendeten Statistik bewerten.
Informatorischer Anteil
- Die Studierenden sind in der Lage in R eine statistische Modellierung zu planen und den entsprechenden R Code zu erstellen.
- Die Studierenden k?nnen R Code Chunks miteinander sinnvoll für die eigene Anwendung kombinieren und optimieren.
- Nutzung und Transfer
Die Studierenden sind in der Lage Kosten- und Nutzenabsch?tzungen anhand von statistischen Modellen und deren Effektsch?tzern durchzuführen. Diese Absch?tzungen umfassen im Besonderen die Planung von technischen und biologischen Prozesses in den Agrarwissenschaften. Die Studierenden k?nnen verschiedene technische Prozesse miteinander vergleichen und eine Aussage über die Nichtunterlegenheit oder den statistischen Unterschied treffen. Die beiden gegens?tzlichen Konzepte von einem geplanten Experiment und einer technischen Nichtunterlegenheit k?nnen von den Studierenden unterschieden werden. Die Studierenden sind in der Lage selbst?ndig Datenanalysen auf gro?en Datens?tzen in R durchzuführen. Die Studierenden k?nnen die g?ngigen experimentellen Designs für verschiedene Berufsfelder und Anwendungen anpassen und durchführen.
- Wissenschaftliche Innovation
Die Studierende k?nnen statistische Ma?zahlen aus wissenschaftlichen Publikationen in andere wissenschaftliche Kontexte einordnen. Die Studierenden sind in der Lage wissenschaftlich zu Arbeiten und eine praktische Fragestellung in einen wissenschaftlichen Erkenntnisprozess zu übersetzen. Die Studierenden k?nnen statistische Auswertungen aus wissenschaftlichen Publikationen verstehen und informierte Forschungsideen entwickeln. Die Studierenden sind in der Lage bei der Erstellung von Daten aus Experimenten die wissenschaftliche Verwertbarkeit in R zu berücksichtigen. Die Studierenden k?nnen über die Erstellung von automatisierten Berichten die Reproduzierbarkeit der eigenen Forschungsergebnisse gew?hrleisten.
- Kommunikation und Kooperation
Die Studierenden sind in der Lage durch das Konzept der automatisierten Berichtserstattung durchgeführte Experimente und statistische Auswertungen mit anderen Forschenden zu teilen. Die Studierenden sind dadurch in der Lage in multidiziplin?ren, wissenschaftlichen Teams mitzuwirken. Die Studierenden k?nnen eine gemeinsam geplante Forschungsskizze in R umsetzen. Die Studierenden sind in der Lage die Ergebnisse einer statistischen Analyse auch Fachfremden zu erl?utern.
- Wissenschaftliches Selbstverst?ndnis / Professionalit?t
Die Studierenden k?nnen wissenschaftliche Publikationen und deren statistischen Ma?zahlen in den Kontext des eigenen Berufsfeldes setzen und somit informierte Entscheidungen treffen. Die Studierende sind sich der inh?renten Unsicherheit der wissenschaftlichen Forschung bewusst und k?nnen die eigenen Forschungsergebnisse kritisch hinterfragen.
- Literatur
- Das Skript des Statistik- und Programmierteil des Moduls unter jkruppa.github.io
- Teile des Skripts als Video unter www.youtube.com/c/JochenKruppa
- Dormann, Carsten F. Parametrische Statistik. Springer Berlin Heidelberg, 2013.
- Wickham, Hadley, and Garrett Grolemund. R for data science: import, tidy, transform, visualize, and model data. O'Reilly Media, Inc., 2016. \[https://r4ds.had.co.nz/\]
- Data Science for Agriculture in R unter schmidtpaul.github.io/DSFAIR/
- Zusammenhang mit anderen Modulen
Das Modul "Spezielle Statistik und Versuchswesen" bereitet zudem auf weiterführende Module aus verschiedenen Themenbereichen vor. Zu diesen Themenbereichen geh?ren insbesondere
- Projektauswertung und -vorstellung (44B0597)
- Berufspraktisches Projekt (BAP) (44B0595)
- Bachelorarbeit (44B0365)Welche nachfolgenden Module konkret in Frage kommen, h?ngt von den einzelnen Studieng?ngen ab. N?here Informationen hierzu bietet der Studienverlaufsplan in der jeweils gültigen Studienordnung.
- Verwendbarkeit nach Studieng?ngen
- Landwirtschaft
- Landwirtschaft B.Sc. (01.09.2025)
- Landwirtschaft B.Sc. (01.09.2018)
- Angewandte Pflanzenbiologie - Gartenbau, Pflanzentechnologie
- Angewandte Pflanzenbiologie - Gartenbau, Pflanzentechnologie B.Sc. (01.09.2025)
- Angewandte Pflanzenbiologie - Gartenbau, Pflanzentechnologie B.Sc. (01.09.2021)
- Modulpromotor*in
- Kruppa-Scheetz, Jochen
- Lehrende
- Kruppa-Scheetz, Jochen