Fachhochschule Osnabrück	Name:
Fakultät Ingenieurwissenschaften und	MatrNr.:
Informatik	
Prof. DrIng. V. Prediger	Platz-Nr.:

Maschinendynamik WS 2006/07 (20.01.2006)

1.	2.	3.	4.	5.	Σ	Note:
19	18	22	15	26	100	

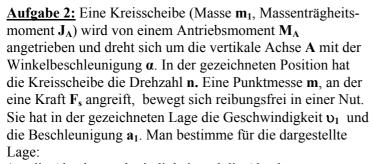
Aufgabe 1: Die Bewegung des Kolbens B in einer horizontalen Nut wird durch den Arm AB gesteuert, der sich mit einer konstanten Winkelgeschwindigkeit ω₀ um das Lager A dreht. Die Länge des Armes AB ändert sich im Laufe der Drehbewegung. Der Kolben B ist durch einen Stab BC (Länge b) mit einem weiteren Kolben C, der sich in einer vertikalen Nut bewegt, gelenkig verbunden. Man bestimme für die skizzierte Lage:

- 1. die Geschwindigkeit und die Beschleunigung des Kolbens **B**;
- 2. die Winkelgeschwindigkeit und die Winkelbeschleunigung des Stabes **BC**;
- 3. die Geschwindigkeit und die Beschleunigung des Kolbens C.

Gegeben:
$$\omega_0 = 10 \text{ s}^{-1}$$
; $\mathbf{h} = 0.4 \text{ m}$; $\mathbf{b} = 0.4 \text{ m}$; $\mathbf{\phi} = 70^{\circ}$

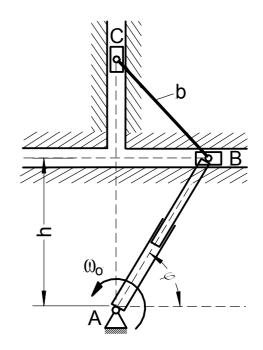
Für den Fall einer zeichnerischen Lösung: $m_L = 0, 1 \frac{m}{cm_z}$.

Ergebnisse:
$$\upsilon_B = 4.6 \text{m/s}; \upsilon_C = 1.8 \text{m/s}; a_B = 34 \text{m/s}^2; a_c = 78 \text{m/s}^2; \omega_{BC} = 12.3 \text{s}^{-1}; \alpha_{BC} = 150 \text{s}^{-2}$$

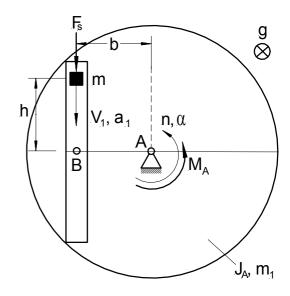


- 1. die Absolutgeschwindigkeit und die Absolutbeschleunigung der Punktmasse **m**;
- 2. die an der Punktmasse m angreifende Kraft F_s;
- 3. das momentane Antriebsmoment M_A ;
- 4. die Zeit, zu der die Punktmasse die Position **B** erreicht.

Gegeben:
$$\mathbf{b} = 0.5 \text{ m}$$
; $\mathbf{h} = 0.866 \text{ m}$; $\mathbf{m} = 5 \text{ kg}$; $\mathbf{m_1} = 10 \text{ kg}$; $\mathbf{J_A} = 2.0 \text{ kgm}^2$; $\mathbf{n} = 100 \text{ min}^{-1}$; $\alpha = 150 \text{ s}^{-2}$; $\mathbf{v_1} = 2.5 \text{ m/s}$; $\mathbf{a_1} = 10 \text{ m/ s}^{-2}$.



Ergebnisse: $v_{abs} = 11,92 \text{m/s}$; $a_{abs} = 181,36 \text{m/s}^2$; $F_s = 899,67 \text{N}$; $M_A = 398,5 \text{Nm}$; t = 0,235 s.



Aufgabe 3: Das skizzierte System besteht aus einem Körper der Masse m_1 , einer drehbar gelagerten masselosen Umlenkrolle, einer Kreisscheibe (Masse m_2 , Radius R) und einer Punktmasse m_3 . Der Körper m_1 ist mit dem Schwerpunkt der Kreisscheibe durch das Seil 1 verbunden. Die Punktmasse m_3 hängt am Seil 2, das über die Kreisscheibe geführt ist. Nach Freigebe des Systems tritt die Bewegung auf. Man bestimme unter Beachtung der zwischen dem Körper m_1 und der Unterlage wirkenden Gleitreibung:

- 1. die Beschleunigung $\mathbf{a_1}$ des Körpers $\mathbf{m_1}$.
- 2. die Seilkräfte

Gegeben: $\mathbf{m_1} = 10 \text{ kg}$; $\mathbf{m_2} = 10 \text{ kg}$; $\mathbf{m_3} = 5 \text{ kg}$; $\mathbf{R} = 0.3 \text{ m}$; $\mathbf{\mu} = 0.2$.

<u>Aufgabe 4:</u> Auf zwei gleichen Kreisscheiben (Masse m_1 , Radius r), die sich gegenläufig mit den konstanten Winkelgeschwindigkeiten $ω_1$ drehen, befindet sich ein dünner Balken der Masse m mit dem Schwerpunkt im Punkt S. Am Balken ist ein Dämpfer (Dämpfungskonstante k) angeschlossen. Zwischen dem Balken und den beiden Kreisscheiben existiert die Reibung mit der Gleitreibungszahl μ, dadurch wird der Balken in eine Schwingung versetzt. Man bestimme:

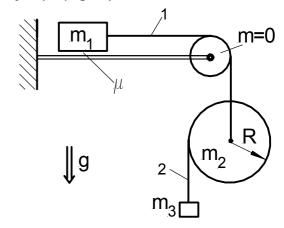
- 1. die Bewegungsgleichung des Balkens (Dgl.);
- 2. die Eigenkreisfrequenz ω_d und die Periode T_d der gedämpften Schwingung;
- 3. Welches Verhältnis zwischen der Dämpfungskonstante **k** und der Masse **m** des Balkens muss vorliegen, damit überhaupt ein Schwingungsvorgang stattfindet.

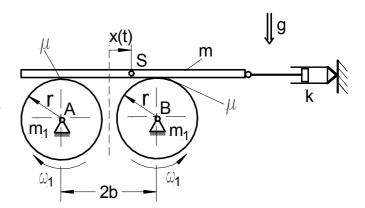
Aufgabe 5: Das skizzierte schwingungsfähige System besteht aus einem Kreiszylinder (Masse m_1 , Radius R), einem starren Balken (Masse m_2 , Länge b), zwei Federn (Federkonstanten c_1 und c_2) und einem geschwindigkeitsproportionalen Dämpfer (Dämpfungskonstante k). Die Feder c_2 erfährt eine harmonische Wegerregung $u(t) = u_0 * sin(\omega t)$, somit schwingt das System mit kleiner Amplitude um die statische Ruhelage, die in der Abbildung dargestellt ist.

Man bestimme:

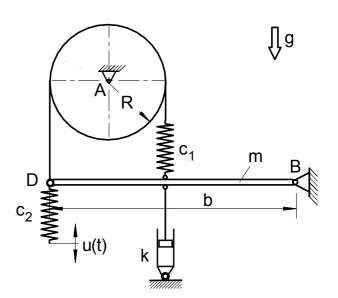
- die Bewegungsgleichung des Systems (Dgl.) für kleine Schwingungen um die statische Ruhelage;
- 2. die Eigenkreisfrequenz ω_0 der Schwingung;
- 3. die Schwingungsamplitude des Punktes **D** im eingeschwungenen Zustand.

Ergebnisse: $\mathbf{a_1} = 4,578 \text{m/s}^2$; $\mathbf{a_2} = 7,194 \text{m/s}^2$; $\mathbf{F_1} = 65,4 \text{N}$; $\mathbf{F_2} = 13,08 \text{N}$





Gegeben: $\mathbf{b} = 0.1 \text{ m}$; $\mathbf{m} = 1 \text{ kg}$; $\mathbf{\mu} = 0.25$; $\mathbf{k} = 4 \text{ kg/s}$ Ergebnisse: $\mathbf{\omega_d} = 4.53 \text{ s}^{-1}$; $T_d = 1.386 \text{ s}$; $k/m < 9.90 \text{ s}^{-1}$



Gegeben: $\mathbf{m_1} = 20 \text{ kg}$; $\mathbf{m_2} = 30 \text{ kg}$; $\mathbf{c_1} = 40 \text{ N/m}$; $\mathbf{c_2} = 90 \text{ N/m}$; $\mathbf{k} = 200 \text{ kg/s}$; $\mathbf{R} = 0.25 \text{ m}$; $\mathbf{b} = 1.0 \text{ m}$; $\mathbf{u_0} = 0.1 \text{ m}$; $\mathbf{\omega} = 3.3 \text{ s}^{-1}$. Ergebnisse: $\mathbf{\omega_0} = 3 \text{ s}^{-1}$; $\mathbf{y_D} = 0.053 \text{ m}$

